
Back in 1959, Grass Valley was born, a company that produced equipment for the television broadcast industry and in 1968 they introduced their first vision mixer, or production switcher as they are better known. They then added a whole range of production switchers from the small to the very grand, but the small one is the one that captured everyone’s imagination, the GVG 100. The unit was in two halves a crate which was rack mounted and an extremely attractive control surface housed in a desk top case, the two units were linked by a small cable carrying RS422 serial commands.

The crate first appeared as a small 3U unit that could mix composite video and was followed later by a larger crate that brought component mixing to the party. The control panel was able to drive either version. Later a separate company, Ross, designed and built an SDI (digital TV) mixer crate that again connected to the same control panel and used the same protocol. This was a brave move, but It allowed an update into the digital world, and enabled Ross to produce a very price competitive switcher, as the most expensive part of any mixer is the control surface and being able to re-use an existing panel was a popular move. The cut buttons ordered as replacement items alone were over £30 a piece! They have a genuinely nice feel and can be customised by printing the source onto overhead projector gels, cutting, and fitting it inside the button.

The communication from the panel to the crate (RS 422) a standard that was extremely popular with linear edit suits. The GVG mixer can be controlled via this, using P2 protocol and there is a button on the panel to pass control to an edit controller.

[image: image4.jpg]PROCESSOR

PORT 3

PORT 4

PORT1

P30
P31
P32
P33

P40
P41
P42
P43
P44
P45
P46
P47

A0
A1
A2
A3

Do
D1
D2
D3
D4
D5
D6
D7

DSPLY CLK
READ BUTTON
WRITE LAMP

READ ANALOG
CONVERT

 Grass Valley Mixer Conversions. The top bank of 10 yellow buttons is the Key Bank. The red bank of buttons controls the on air or PGM and the bottom white buttons are the PST or pre-set where the on-air source is previewed, before being switched to on air.
[image: image5.jpg]i2c bus from ESP8266 connects to

SCL Pin 14 to PRT 1, PRT 3, PRT4

SDA Pin 15 to PRT 1, PRT 3, PRT4
1e

®40
20 ®39
3e e38
40 ®37
5@ 2“—_| 36
6c® (8] (8% ®35
7@ fi0 PRT 3(7F ® 34
+5 8 & (6} 33 A
9 2 E_L.;;z n

PCFBSTAP
PCFBSTAAP

A
3
=

| Bl 3] Bl ;

WRITE LAMP 13 8—L¢|
READ BUTTON 148—[]

F

PCFESTAP
PCFBSTAAP

"CONVERT 16®— s3
READ ANALOG 17 [2Bk
18 o 88 [3]7 @25-D¢
190 > 22 07

gnd 20

If we understand how the GVG Panel works we can then investigate how to interface it to something other than a GVG mixer, a brilliant mixer in its day, but dated now. The heart of the logic is a 6801 microprocessor and unfortunately this is not the kind of processor with an external EPROM, which could be removed to look at the code and perhaps on a good day change it. I decided to investigate making it work without the processor.
Remove the case, eight screws at the bottom of the unit and we are inside the control panel, remove the processor.

The unit requires two power supply rails to stand alone, these were in the original crate and are +9 and +14
[image: image6.jpg].-

= 13 ¢-¢ﬁjﬁ‘]¢-¢43' 23
- B e =0 l?’?. e -

-----n--. '|

, _ s | \
% A J34Po!\:lven.€-necto

J3 is the power and it is connected to the 15 pin D connector on the bottom so you can either power it through the D connector or remove the ribbon cable and connect to J3 direct. The +9 is further regulated on the panel by a pair of 5v regulators and draws about 300 mA. The 14v has no further regulation and can draw as much as 1.5A with all the lamps lit (worst case). Later panels were fitted with LEDS and will reduce this consumption considerably.
With the processor removed the only way to communicate with the panel is via the processor socket and a header plug or via J2 (IDC Connector) which carries the same data address and command connections.
The processor used to communicate all the button presses to the crate which in turn replied with which lamps to light, via the RS422 data link, again on the 15 way D connector , with the processor removed all this has gone and we have a very dumb control panel .

[image: image7.jpg]

The processor I/O is where the state of all the switches and analogue pots are read, and the panel lamps controlled via communications with the crate. The processor has control over the panel via a 4-bit address bus, 8 data connections and 5 command lines. These are all outputs from the processor, except for the data lines which are bidirectional. If we can take possession of the 17 lines then we can do everything the processor did, all we have to do is map out the hardware, then working backwards planning how to read a button or light a lamp.
The GVG Processor I/O connections

My first thoughts on pulling the micro was to fit a header plug and build on it three 8 bit i2c port chips (PCF 8574's), or plan B to interface the same three port chips via the J2 socket, where all of the 17 I/O connections are also available. This then enables us to have i2c access to the control panel. Then we need a way to be able quickly to manipulate the i2c bus and verify we have control, map out the hardware, and develop routines for controlling the mixer panel. I decided used the ESP 8266 development module, running Annex BASIC and via the i2c bus control the three port chips, that now replace GVG processor. In this way I can make some sense of the hardware interconnections within the panel.

[image: image8.png]Processor pins J2 connector Signal

3 +5

land2 Gnd
37 11 A0
36 12 Al
35 13 A2
34 14 A3
29 15 DO
28 16 D1
27 17 D2
26 19 D3
25 10 D4
24 8 D5
23 6 D6
22 4 D7
13 18 Write to Lamps
14 20 Read Button
16 7 Convert
17 5 Read Analogue
15 9 Display Clock

The three port chips essentially become and exploratory dongle supplying an i2c to interface the GVG panel
THE GVG Exploratory dongle (header Plug)
my junk box was without a header plug, so the i2c dongle was constructed on a prototyping board and connections to J2.
The PCF 8574 . The i2c address can be set by A0 A1 A3 (explained later)
[image: image9.png]D Connector 13 IDC Connector Function

9,10,11 Pins 1,2,3 Ground

12,13 Pins 4,5 +14Lamp supply

14 Pins 6 +9v Supply to on board 5v regulator

[image: image10.jpg]Aol
At
Azl
Po |
P1(]
P2 |
P3]
GND]

EREEEE S

16
15
14
13
12
1
10

Vee
SDA
scL
INT
P7
P6
P5
P4

Processor and J2 connections
I started with the panel lamps these are activated by a low on the GVG, processor pin 13, (pin 18 of J2) this opens up access to 8 lamp latches which are driven by a series of 74LS374, 8 bit data latches , that control the state of the lamps. This is a good starting point for our project as success will be easily seen as the lamps illuminate. All we must do is understand the lamp map and how to reach every individual lamp.
There are 63 button lamps that can be illuminated and that is more than can be accessed by the 4 address lines. The 4 lines are used to enable one of 8 data latches. The data inputs of these latches are connected to the bidirectional port 4 of the processor. This enables individual access to a lamp or more than one lamp at the same time within the same latch.
Port 3 controls the 4- bit address bus. Port 4 is used to read and write to the data bus. Leaving Port 1 to control the command lines.
[image: image11.jpg]a. PCF85T4.

[rmp——
———
so 1 0 0 a2 ala 0]

643216 8 4 2 1

Decimal address just add the numbers
under the colum with a 1 in it

The GVG hardware has some additional series switches that need setting in software to enable the three banks KEY, PGM, PST of the mixer to be illuminated. The other lamps are not affected. These switches are also controlled by the 74LS374 data latches.

The map shows the address and how to illuminate any button lamp using the latch address which is decoded via an 74LS154 decoder within the panel and enables the selected latch access to a 74LS374 (8 D type latch) which in turn drives up to 8 individual lamp drivers . All the 74LS374 latches have their data inputs connected to Port 4 (the bidirectional port).
This enables the choice of a latch which will lock in the decimal word. The lamps are not arranged as I would like EG all the PGM lamps are not on the same latch. This means turning on a PGM lamp can turn off a PST lamp. If you could read the latches you could add the illuminated PST lamp to the PGM choice and stop this undesirable effect. unfortunately, the panel design does not allow the latches to be read, only written to so the BASIC programme will have to store the value in every latch and when we want to change a lamp the latch will have to be looked up edited and the GVG lamps refreshed. To this end I have declared 11 global variables in the software and called them N to W and have included them in the address map.
 The reason for calling the three ports 1, 3 and 4 is so they match the ports on the original 6801 processor. They all need different i2c addresses. PRT1 has A0 A1 A2 pulled high so it will have the highest address. PRT 4 has A0 A1 A3 all grounded so it will have the lowest address, PRT 3 has A0 and A3 pulled high and A2 pulled low so it will have and address between the others.
[image: image12.png]¢

The Global variable where the latch data is stored eg n to w and the GVG
latch address to put the data to control the lamps with strobe routine
e
PORT3 PORT3 PORT3 PORT3 PORT3 PORT3 PORT3 PORT3 POR PORT 3

PORT 4 ADDRESSO | ADDRESS 1 /ADDRESS 2 /ADDRESS 3 /ADDRESS 4 ADDRESS 5 ADDRESS 6 ADDRESS 7 Address 8 Address 9
B | latch1S0 | latchis1 | latchlS2 | latchls3 | latchis4 | latchis5 | lotchis6 | latchls7 Latch 158 | LatchLS9
8 wrdéecms) | soft copy |softcopy |softcopy [softcopy | softcopy |softcopy [softcopy | softcopy Soft Copy | Soft Copy
£ n o p q f3 s t u v w

1 PGM 8 KEYS KEY [Kev3 PST3 FTB KEY 1 KEY ON
2 INVERT SRESN Rev
2 = PST4 KEVA KEY ASPECTON | PGMO WIPE KEY ON | BOARDER Wipe3,
3 MASK GREEN
a
=3 4 PGM 9 KEY7 LINEAR KEY2 PST2 DSK AUTO OUTLINE Positioner
9 | KEY GREEN | TRANS
1
g' s PsTS KEVG E-MEM Nb key PGM1 MIX KEYS NORMAL Wipes Wipes
© lamp
oy power
3

|16 PST9 PGM 7 AUTO KEY1 PST1 DSK EFFECT EXTRUDE Wipe 6 Editor
LU SELECT Enable
_q{:l 32 PST6. PGM4 PSTPTN NB PGM PGM2 ? KEV9 Wipe 2 Wipe 10
e lamp.
<) power
4
A [e PST8 PGM6 CHROMA | KEY 0 50 UPPER BKGD DROP Wipe 1 Wipeg
2 KEY SHADOW
k= umim
R
o |18 PST7 PGMS LUM NBPST PGM3 LOWER KEY ON AUX Wipe7 Wipe4
)-E KEY lamp umim GREEN BUS
power RIGHT
The lamp map for the mixer

Port 1 H H H = 39 Port 3 H L H = 37 Port 4 L L L = 32
The suffix on the PCF 8574 can change the address, this is so that more than 7 port chips can be used in a single i2c map by adding a mix of different suffix chips. Always use the address scanner software and change the equates in the programme if necessary.

The i2c connector on the ESP 8266 development kit is on GPI05 SCL and GPI04 SDA and don't forget to connect the ground across to the header and power the ESP via the USB input, I used the ESP 3v3 rail to power the ports and had no problems interfacing to the GVG processor I/O directly 3V3 was seen as a logic 1
[image: image1.jpg]DEVKIT V3

ADO
RaY i2c bus
RSV —— SDA——F—1—
sD3 5 v

<[|
sp2

T .5

sp1

cMD

spo

cLK

GND.

3v3

Not available

ESP 8266 one possibility for controlling the i2c Exploratory Dongle
Let us connect our exploratory dongle and run the following i2c software address scanner as our first foray into investigating if the panel can be of any use outside the purpose for which it was developed.

This i2c scanner software can be pasted into the programme run and the ports checked for their i2c address and functionality.
i2c.setup 4, 5 'i2c RX and TX pins need to be configured as appropriate

goto i2cscanner 'uncomment to use i2c scanner

i2cscanner:

wlog "Scanning for i2c devices..."

for c = 1 to 126

 i2c.begin c

 if i2c.end = 0 then

 wlog "found " + str$(c) + string$(5," ") + hex$(c)

 pause 50

 end if

next c

wlog "Finished"

end

return
This is the screen printout when the scanner software is run, remember my port chips were PCF 8574 you might get different addresses for other suffix chips.
Log
Scanning for i2c devices...
found 32 20
found 37 25
found 39 27
Finished
EG Port 1=39, Port 3=37 Port 4=32 remember BASIC is all decimal. With the dongle reporting back let us try and command the GVG Panel, if we run the following programme, we should be able to lamp test all the lamps, by turning them all on and off. This removes the worry about the soft power switches to the KEY PGM and PST banks as it just loads all the 8 latches with logic 1, then logic 0. It does this 8 times
'simple flash the lamps programme

'for GVG panel and finish with them off

let PRT1=39

let PRT3=37

let PRT4=32

i2c.setup 4,5

i2c.begin PRT1 'command lamp map on

i2c.write 254

i2c.end

for B=1 to 10 'number of flashes

 ' all lamps on

 for a=0 to 10 'increment your way across the latches

 i2c.begin PRT4 'data bus

 i2c.write 255 'lamps on

 i2c.end

 i2c.begin PRT3 'address bus

 i2c.write a 'latch number

 i2c.end

 next a

 pause 10

 ' clear all lamps

 for c=0 to 10

 i2c.begin PRT4 'data bus

 i2c.write 0

 i2c.end

 i2c.begin PRT3 'address bus

 i2c.write c

 i2c.end

 pause 10

 next c

next b ' repeat 10 times

This proves that we have some control over the lamps and that the ports chips are controlling the address, data, and lamp commands.
Remember the lamps cannot be read by the software ,so we need to keep copies in the software as global variables. N to W for the latch address then we can go to any latch copies read the data edit the data and call the routine in software called latches which updates the Grass Valley hardware with the data stored in the global variables N through to W.
The control Latch LS3 needs enabling and Port 4 (data bus) setting with the decimal word 8 + 32 + 128 = 168 on the data bus, to turn on the series switches power switches which inhibit the power to the KEY, PGM and PST lights. This is only the KEY PST and PGM lamps the other lamp lights are not affected by these soft power switches.

If you have the light Flashing lets move onto the buttons and again there is a map and a command to access the map by putting 253 on port 1 which will pull pin 14 low (the commands are all active Low).

We do scan the buttons in “ button pole loop to detect button presses”
do

 for B=0 to 9

 i2c.begin PRT3 ' Address port

 i2c.write B ' Scan buttons BS2 low

 i2c.end

 i2c.begin PRT4 ' Control port

 i2c.write 255 ' needed to work

 i2c.end

 i2c.begin PRT1 ' Control port

 i2c.write buttons ' Scan buttons

 i2c.end

 i2c.reqfrom PRT4,1

 e = i2c.read

 i2c.end

 if e< 255 then gosub push

 next B

 '----will display pots if commented out is removed and programme restarted----

 'gosub analog1 -----------Tbar

 'gosub analog2'-----------soft

 'gosub analog3'-----------hue

 'gosub analog4'-----------chroma

 loop until 0
If any button is depressed it will deliver a value of less than 255 and go to the subroutine called push buttons director to sort how to process each button-. This works by scanning BS0 to BS9 the column address of the buttons on the address bus (Port 3) and reading the data bus on Port 4. The scan address and the data delivered on Port 4 will find which button has been pressed. We then use a lookup table to find which button has been pressed and call the required sub routine to process that Key. EG if it is a PST key where only one key is illuminated at once it will switch all the lamps in that bank off and then illuminate the desired lamp in the Global Variable (Lamp memory) and then call latches, to update the panel latches.
[image: image2.png]The Button Map

Port 4 BSO BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9
read
254 E-MEM KEY O PGM 0 PSTO PGM 8 KEY 1
KEY 1 PGM 1 PST1 PGM 9 KEY
KEY 2 PGM 2 PST 2 KEY 8 BKGD
KEY 3 PGM 3 PST3 KEY 9 EFFECTS EFFECT
SEND POSITIONER | REVERSE
KEY 4 PGM 4 PST 4 PST8 BUS AUX DSK CUT
KEY 5 PGM 5 PST 5 PSTS WIPE DSK MIX
KEY 6 PGM 6 PST 6 CcuT MIX FTB SELECT FRAMES 2 FRAMES 3
copy
ASPECT KEY 7 PGM 7 PST7 AUTO DSK PVYW
FRAMES 1 KEY DEL EDITOR
ON TRANS SELECT ENABLE

Once we have the button lamps and the buttons working in harmony, we need to communicate the panel commands out to the commercial software Vmix that will process the video effects and produce streaming data. Vmix can be used by mouse clicks or PC Keyboard commands. This software is commercial, but there are two free options, a time limited full option and limited function option that does not time expire.

I started with the fulltime limited version, but it expired so I am running with the free version. It will only allow four video inputs, the GVG panel will work with 10 so all the buttons function EG the lights work but you can only get the software to work on the first 4 buttons of the PGM and PST selector, unless you buy a full version of the software.
[image: image13.png]

The Vmix short cut menu(top right on the front panel) allows you to Assign functions to PC keyboard commands, useful to get the hang of what the command does. The other shortcut choice is MIDI (Musical Industry Digital Interface). This is how our GVG panel communicates with Vmix. Annex will not deliver MIDI data so we have added a second processor that will, Arduino Pro. This processor is in slave mode and interfaced to the i2c bus at address 7 or MIDI in our global variables. The subroutine Arduino is the key press and this processor runs a separate programme in C+ to convert the data sent to i2c address 7 to a MIDI note of the same value. In Vmix we have set up a table to match the GVG key press or MIDI note to a Vmix .

The software download GVG 16 has the Annex BASIC file, the Arduino C+ file, the GVG Panel schematics and a Vmix MIDI settings file which can be imported in the shortcut’s menu. There are things in the programme such as analogue 1,2,3,4 that are commented out and are being worked on and some wlog commands that have been used to trouble shoot the programme. This version will also talk to an LED display 16 x 2, Software version 16 currently under development uses a smaller OLED display which will fit the GVG Panel window replacing the 7 segment displays which, used to set the duration of any auto mix or DV effect but will not interface to Vmix.
The cut button on the GVG panel will take the picture on the PST bank and switch it to the PGM bank, so we can select a camera or video source and the cut it up on air (pre-set and take logic). We can also use the Auto Trans button to do the same but as a DVE effector or cross fade depending on the wipe or effect button. The picture that was on air then becomes our preview. To keep in sync with this Vmix function the PGM and PST banks need to be able exchange their selection. The routine cutt carries out this function.

I did not set a global variable for the DVE pattern selector, something I need to correct. So, the DVE choice is stored in the Variable Arduino and I store it when I need to use the Variable to communicate a MIDI note and restore it after use.

The Arduino micro translates all i2c communication to a three function MIDI note EG channel, note and value. The last field is not used as the GVG panel is not a musical instrument. All the notes use CH3 with one exception 76 which is will deliver analogue data as a sandwich 76 data byte 76 data byte and so on. This is how the T-bar communicates with Vmix..
Positioner and Reverse start and stop the hard disc recorder.
Fade to Black will do exactly that, but not show on the PGM monitor in Vmix
The wipe buttons will select the DVE effect (and display on the OLED screen which one)
Auto Trans will per this operation and the PST and PGM banks will switch to keep sync

Mix and Wipe will toggle the Auto Trans between Mix and DVD effect

Key bank will animate in a Strapline for input 1 (free software) more on full versions of Vmix

Key 9 will animate out any strapline

T-bar will DVE or mix PST source to PGM and if completed will switch PGM and PST to keep in sync

Joystick will Pan and Tilt remote Camera head (proposed)
OLED display will show DVE effect and PST source

Cut will switch PST screen to PGM and put the earlier PGM source on PST or Preview monitor

PSTN, Lum Key, Linear Key, Chroma Key. Will set which remote camera the Joystick controls (proposed)
 The PCB has two additional PCF 8574’s located at i2c address location 57 and 69 these are not required to drive Vmix, but I have been experimenting with Camera Tally lights (I/O sub routine), Vmix has a better inbuilt camera tally light system
Mix in operation so far https://www.youtube.com/watch?v=P0jH4zXzhXw
[image: image14.jpg]

The T-Bar will not use the wipe buttons to select its effect. It will instead use the effect set here on the Vmix control screen.
An added optional module is the PCA 9685, this is connected to the i2C bus and controls up to 16 SG 90 or larger servo modules. One pair is used to control a small Pan and Tilt webcam. Larger servo modules can be used but beware some of them can consume several amps on stall.

The software can select any one of four sockets and the Chroma pot will control pan and the lum pot will control Lum. I do not have zoom or focus on my webcam, but Hue ill control a third servo for this purpose if required.
[image: image3.png]PCAGGa5 16-Cramel 12-Bue Pt Draver
(] X

Vo supply .

2 Termns block .
-5 roverse palaci o
xS reskon
4010004z Gins- are nott

nooe weco
Peee 0006
cioe oocs @

neos
eo0s

G
PCA9685 module —

SDA
891011 12131415 yoo

A PCA 9685 module is needed to control the remote Camera Pan and Tilt
[image: image15.png]B4 Settings x
Disply
Outputs /NDI

ding -
Extemal Dutput

budio

Taly Light Preiew
oot Preview
At Preview

About

Add Edt Clone. Remove MIDI Settings Templates

Pan and Tilt Head. Four of these are selectable via the 5 yellow buttons below the OLED display. Normal returns the control to the mixer.
